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The ‘piston problem’ with thermal radiation 

By K U O  CHANG WANG 
The Martin Company, Baltimore, Maryland 

(Received 27 December 1963 and in revised form 26 May 1964) 

The classical problem of the motion of a one-dimensional unsteady shock 
generated by a piston moving with velocity up = ct” is extended to take into 
account thermal radiation effects by the similarity method of Taylor and Sedov. 
Gray gas and local thermodynamic equilibrium are assumed and a modification 
of the Schuster-Schwarzschild differential equation for the heat flux is adopted. 
The optical thickness is not restricted to be thin or thick, and the absorption 
coefficient is assumed to vary with the density and temperature. Numerical 
results indicate that the pressure and velocity are not affected much by the 
radiation, but the density, temperature and radiant heat flux are changed 
considerably. 

1. Introduction 
As a result of increasing flight speeds in space exploration, thermal radiation 

becomes increasingly more important in aerodynamic problems. In  the present 
work, we shall extend the one-dimensional ‘piston problem ’ considered by 
Taylor (1946) and Sedov (1959) to take into account radiation. 

Previous investigations by Marshak (1958) and Elliott (1960) on one-dimen- 
sional unsteady radiating shock motion are all limited to the optically thick case. 
Part of Elliott’s work is, in fact, very similar to an earlier one of Korobeinikov 
(1957). More recently, Trilling (1963), using the method of separation of variables, 
obtained similar solutions of a Cauchy-type one-dimensional unsteady problem 
with radiation effects; but the absorption coefficient was assumed to be some 
average constant. 

In  the present work, both the limitation of thick opacity and constant absorp- 
tion coefficient are removed. Of course, certain common simplifications are still 
necessary in order to make the problem less complicated. These include: local 
thermodynamic equilibrium, gray gas, transparent shock, black and cool piston, 
perfect gas, and negligible radiation pressure and energy. 

Two different approaches have been widely used in radiation gas dynamics. 
One is the integro-differential approach; the other the differential approach. 
For ease in obtaining similar solutions, the differential approach was chosen for 
this work. In  many one-dimensional radiative transfer problems, including the 
one considered here, the boundary conditions are specified in terms of qr+ and 
qv-, the average heat flux along two opposite directions in a one-dimensional 
problem. It is therefore more convenient to deal with two first-order differential 
equations for q,.+ and qr-. In  classical astrophysics literature, this is known as the 
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Schuster-Schwarzschild method (cf. Sobolev 1963). Actually, the differential 
equations used here are a modified version of Schuster-Schwarzschild’s original 
ones recently suggested by Traugott & Wang (1964).  The differential method 
yields results in excellent agreement with the exact integro-differential method, 
at least for some problems (cf. Adrianov & Polyak 1963). 

Two similarity conditions due to radiation are first determined; the system of 
partial differential equations is then reduced to one of ordinary differential 
equations. The latter is numerically integrated for various cases, but all the 
results reveal similar trends of the radiation effects. It is found that radiation has 
practically no effect on pressure and velocity, increases the density (hence lowers 
the temperature) considerably, and decreases the shock distances until a mini- 
mum value is reached. 

The background of the piston problem has been well explored (Sedov 1959; 
Kochina & Mel’nikova 1958). Results of the present work may find direct 
application to problems such as stagnation-point flow, explosion, shock-tube 
flow, and hypersonic flow over slender power-law bodies (restricted to the thin or 
thick limit in order that the gas slabs normal to the body axis are independent of 
each other). Meanwhile, the present results also suggest considerable simplifica- 
tions to other problems, for example, the flow over a blunt body. One may 
consider the pressure and velocity as given from the non-radiating solutions, 
solve only for the modifications on temperature (hence density) field, and deter- 
mine the radiative heat transfer simultaneously. 

In  a report by Wang (1963) ,  one may find a more detailed treatment of the 
present problem, including (1) the effect of changing the specific-heat ratio, 
( 2 )  the thin solution for the cylindrical and spherical pistons, ( 3 )  results for 
negative /? (see equation (8)) which apply to a higher temperature range than that 
presented in this paper. 

2. Formulation 
2.1. Equations of motion 

The equations of motion are 
a p p t  + a(pv)/ax = 0,  

DvlDt = - p-l aplax, 

where DIDt = a/at+ea/h;  (4) 
p is pressure, p density; v velocity, y specific heat ratio, x the one-dimensional 
co-ordinate, t time and qr the net radiative flux; qr is determined by Traugott & 
Wang (1964) 

(lr = qr+- qr-, (5a) 
( 5 b )  

where qr+ and qr- are the average radiant heat fluxes along two opposite directions 
in a one-dimensional space, r is the optical thickness, and B is Planck’s function 
of black-body radiation; r and B are respectively defined by 

dq,,/dr = f 4 3  qrk T 2vB,  

7 = S K d x ,  B = crTd/n, ( 6 ,  7) 
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where cis Stefan's constant, T temperature, and K the absorption coefficient per 
unit vohme. In  generql, K is a complicated function of density, temperature, 
composition, etc. For convenience, it  is taken here to vary according to a power 

( 8 )  
law 

where K,, a, ~3 are constants to be determined by best fit with available opacity 
data. 

Substituting ( 6 )  through (8) into (5a ,  b )  and using the perfect-gas relation, one 

K = K,p"TP, 

In  the thin and thick limits, (9a, b )  become 

= --RP-4p-a 16 CT (:)"': ($) (thick). ' 3 K ,  

It is noteworthy that no dimensional constant appears in equations ( 1 )  through 
(3), but there are two in (9a, b ) ,  and a different one in ( l o b ) .  
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FIGURE 1. Shock generated by a moving piston. 

2.2.  Boundary conditions 

We shall use the subscripts p ,  s, 1 and 2 as referring to the piston, shock, and the 
regions immediately ahead and behind the shock, respectively (figure 1 ) .  The 
piston moves with velocity up = ctn; c andn are constants. For the piston location, 
xp = cP+l/(n+ l ) ,  to increase as t increases ( t  > 0), n must be greater than - 1 .  
Ahead of the shock, the gas is at rest and its density varies according to 

Pa = A/xW, ( 1 1 )  

where A and o are constants. For radiation to be important, the strong shock 
approximation must be valid, i.e. p ,  = T, = 0.  The boundary conditions to be 
satisfied immediately behind the shock are 

132 = W Y +  l)lPl% Pz = {(Y+ l ) / ( r -  l) lPl,  W a ,  b )  

v2 = W ( Y +  1)l% (ar+)z  = 0. (12c, d )  
29 Fluid Mech. 20 
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Condition ( 1 2 4  states that the gas receives no radiation from in front of the 
shock. Conditions (12a,  b, c )  are the usual strong-shock jump conditions. It is 
true that the conservation of energy across the shock should contain the radiation 
flux term; however, since the shock is assumed to be transparent, the radiation 
flux is the same on both sides, hence dropping out from the conservation of 
energy relation. In  the thick limit, this disagrees with Elliott's work where 
qr1 = 0, but q,, =l= 0, i.e. q,, =# q,,. The boundary conditions at the piston are 

v = vp = Ct", (qr& = 0. (13% b )  

Again condition (13b) states that the gas receives no radiation from the piston. 
For a similar flow, the shock location, x,, must be proportional to the piston 

location, xp, i.e. xp = 6x, where the constant 6 is not known until the problem is 
solved. Clearly vp = 6v,. 

We have now completed the formulation of a two-sided boundary-value 
problem. For similarity study, it is important to notice that the above boundary 
conditions introduce two fundamental dimensional parameters, namely c and A .  

3. Similarity considerations 
3.1. Similarity conditions 

Sedov (1959) shows that for the present type of problem, if there are only two 
parameters with independent dimensions, the motion is self-similar. In  addition 
to c and A introduced through the boundary conditions, the radiative flux equa- 
tions (gal b)  contain two new dimensional constants, KJRP and vK1/R1+4. To 
have a similarity solution, the dimensions of these two new constants, therefore, 
must be expressible in terms of the dimensions of c and A .  This leads to two 
conditions which we shall call similarity conditions. Simple dimensional analysis 
shows that these two conditions are 

Constants a, ,!?, w, n cannot all be arbitrary, If a and /3 are chosen according to 
the best fit of a power law with known opacity data, then n and w will be deter- 
mined by (14a,  b).  We observe from (14a,  b)  that no similarity solution can be 
found in the present work for either the constant piston velocity case (n = 0 )  or 
the constant ambient density case (w = 0)  if the optical thickness is arbitrary. 

In  the thin limit, the dimensional constant in (10a )  is the same as one of those 
in (9a ,  b ) ;  the similarity condition is simply the one given by (14a) .  In  the thick 
limit, the dimensional constant, aRB-4/K1, in ( l o b )  is obtained by dividing 
vK1/RB+4 by (K1/BQ2; hence, the corresponding similarity condition is obtained 
by first multiplying (14b) by 2 a  and then adding it to ( l - a )  times (14a ) ;  the 
result is 

w =(n(2,!?-4)+1)/(n+l)(l+a). 

For both limiting cases, similarity solutions may be found when either w = 0 or 
n = 0. 
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p' = p[ (w  - 1)  V - AV']/A[V - (n+ l ) ] ,  

q;* = A-l([(w - 3 )  * 43 cl(p)a (?5/"/A"'("+"] qr* 

(17b)  

(17c )  

T 2C2(P)" (p/p)8+4h(28+6)/(~+1)~, ( 1 7 4  e )  

( 1 8 a )  

(18b)  

F' = @/A) ( (w - 2 )  ( P / P )  + V (  1 - V )  - V'A[V - (n + l)]},  

where the prime denotes differentiation with respect to A, and 

c1 = (KIAa/Bp) [c/6(n + 1)]28'(n+1), 

c2 = (CTK, Aa-l/Rfl+4) [c/6(n + 1)](28+5)/(n+l). 

Substituting (16a)-( 16e) into ( 1 0 a )  for the thin limit gives the expressions 
identical to (17d ,  e) with c1 = 0. Substituting (16a) - ( l6e )  into ( l o b )  for the 
thick limit gives 

The relative magnitude of the dimensionless constants c1 and c2 measures the 
absorption property of the gas medium. 

A t  the shock ( A  = l ) ,  from (12a)-(12d),  
The corresponding transformed boundary conditions are: 

p = pz = ( y +  l) /(r-  l ) ,  V = V2 = 2(n+ l ) / ( y +  l ) ,  

I ,  = p2 = 2 ( n +  1 ) 2 / ( y +  11, a,+ = (qr+)2 = 0. 

(20a ,  b )  

(20c,  4 

W a ,  b )  

At the piston ( A  = A p ) ,  from ( 1 3 a )  and (13b) ,  
- 

;i; = V P  = n+l,  qr- = ( q r J P  = 0. 

The denominator of ( 1  7a)-( 17 e )  vanishes a t  

A = v-(n+ 1 )  = yI,/p- [ V -  (n+ 1)]2 = 0; 

however, none of these cases occur within our range of interest if the integration 
starts from the shock toward the piston. Condition V - (n  + 1 )  = 0 occurs right at 
the piston, i.e. the end of integration. The equation yP/p = [V - (n + 1)12 means 
physically that the velocity of sound is equal to the particle velocity relative to 
the shock velocity. It is well known that flow behind a normal shock must be 
subsonic, i.e. [V - (n + 1)12 < yji/p. 

29-2 



452 K u o  Chang Wang 

4. Solution and result 
4.1. Exact and thin solutions 

Analytic solution of (17a)-( 17e) is not believed to be feasible, so we must resort to 
the numerical method. Since the value of 4;.- at the shock is not known until the 
problem is solved, we shall follow the standard procedure for integrating a two- 
sided boundary-value problem by guessing a value for (&& and carry on the 
integration step by step until V = V p .  The arbitrarily chosen value of (?jrJs will 
not be the correct one unless the condition ( i j - )p  = 0 is satisfied. 

While the exact (arbitrary opacity) solution is a two-sided boundary-value 
problem, the thin (transparent opacity) limit solution for a plane piston can be 
seen to be an initial-value one. The calculations of V ,  p, ji are decoupled from that 
of ijr after the substitution of ( 1 7 d ,  e )  with c1 = 0 into ( 1 7 a ) ,  and the boundary 
conditions (20a ,  b, c )  provide sufficient initial values a t  the shock. The radiation 
flux can be determined independently as 

where g ,  (7) = T 2 ~ , [ ( p ( ~ ) p  {p(n) /p(438+4 w 7 + 5 ) ' ( ~ + 1 ) 1 ~ = ~ .  ( 2 3 )  

Clearly ?jr(h) can be evaluated once p(h), p(h) are known (hence, hp is known). The 
purpose of carrying out the thin solutions here along with the exact solution is 
twofold: first, to help make a better initial 4,- estimate at the shock for the exact 
solution; secondly, to evaluate the accuracy of the thin approximation in 
comparison with the exact solution. 

The final distributions of the real physical variables are obtained from the 
similarity solutions through the relations 

which follow from (16b)-( 16e) and (20a)- (20d) .  Values of vz ,p2 ,  p z  are determined 
by ( 1 3 a ,  b, c ) .  q,, can be evaluated according to (16e )  once ijr, becomes known 
after the flow equations are integrated. 

4.2. Numerical integration 

The thin solutions were carried out first. The IBM program was tested by re- 
producing some of the known results of Kochina & Mel'nikova (1958) .  The IBM 
program for the exact solutions was tested by requiring that it reproduce the 
results of the thin solutions for cases where both are supposed to be valid. 

The dimensionless constants, cl, cz, in ( 1 7 4  e )  depend on c ,  A ,  a, p, K,, n, g, R,  
6. c and A are the fundamental dimensional parameters of our problem, repre- 
senting separately the effects of the piston velocity and the ambient density. 
Constants a, p, Kl are determined by fitting (9) to the opacity data of air (Wang 
1963) and n and w are determined by ( 1 4 a ,  b ) ;  u = 5.735 x 10-5erg/cm2sec OK, 
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R = 2.882 x 106erg/g OK. The value of 6 is not known until the problem is solved, 
so the actual steps run as follows: for given values of A and c/S, one calculates c, 
and c2 from (18a, b )  and proceeds to perform the numerical integrations. When the 
integrations are completed, the value of 6 = Ap becomes known, and c is deter- 
mined thereafter. 

4.3. Results and discussion 

Numerical integration has been carried out for various cases, including both 
positive and negative values of p, n and w and different values of c, A ,  a and y. 
The radiation effects were discovered to follow pretty much the same pattern. 
Presented in this paper is one set of such results for the case of a = 1, ,8 = 5, 
K ,  = 0,168 x 1O-l' cm2/g n = - 0-0625, w = Q, y = 1.1, A = 1.29 x 10-5 
and 1.29 x g/cm3-" and various c cm/secn+l. Current opacity data indicates 
that a = 1 and j3 = 5 are valid for temperatures up to 15,000 OK. 

In figure 2 (a)-2 ( d ) ,  values of 4c2 rather than c are used, for convenience, as the 
varying parameter in labelling the curves. The case of c1 = c2 = 0 corresponds to 
the non-radiating solution. Deviation from the curve marked 'non-radiating ' 
represents the radiation effect. 

Figure 2 (a )  shows that the pressure is practically unchanged by radiation. 
Since all curves are so close to each other, only a few are actually plotted. The 
maximum change (compared to the non-radiating curve) due to radiation is 
about 2 yo of p2.  The same is true for the velocity distribution (figure 2 ( b ) ) ;  its 
maximum change due to radiation is again only 3 yo of v2. The density (hence, the 
temperature) and heat flux (figures 2(c) to 2(d) are, however, greatly affected; 
the density may be increased by over 120 yo of pz. 

As c increases, the radiation effects become gradually prominent and the thin 
solutions begin to deviate from the exact ones, implying that the gas becomes 
optically thicker. If the parameter A is increased, the deviation between the thin 
solution and the exact solution becomes larger and larger. This simply says that 
higher ambient density causes the gas between the shock and the piston to be 
more opaque. Meanwhile, the density profile tends to consist of two thin boundary 
layers separated by a flat part. Since the pressure is not affected by the radiation, 
the temperature profile clearly consists of two thermal boundary layers separated 
by an isothermal layer. This agrees with the results of Yoshikawa & Chapman 
(1962) and Goulard (1963) despite the fact that their problems are steady ones. 
Presumably, the underlying reason responsible for this situation is that the 
velocity of the propagation of radiation is much larger than the flow velocity, no 
matter whether it is steady or unsteady. 

As c2 increases, the shock distance (distance between the shock and the piston) 
is gradually reduced. However, there exists alimiting value of c2, or, equivalently, 
there exists a minimum shock distance; for c2 slightly larger than this limiting 
value, no solution can be found, and the shock distance jumps from that minimum 
value to zero. The minimum shock distance for the present case is Ap z 0.964. 

Values of the radiant heat flux are of particular interest in the present investi- 
gation. Detailed distributions of the net radiation flux, q,./q,., are shown in figure 
2(d) where the positive part implies qr+ < q7-, i.e. the net radiant heat flows 
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FIUURE 2. a = 1, p = 5, y = 1.1; ---, thin solution; -, exact solution, 
A = 1.29 x 10-bg/cm3-~; ---, exact solution, A = 1-29 x 10-4g/cm3-o. 

(a) Pressure distribution. 
(b) Velocity distribution. 
(c) Density distribution. 
(d )  Net radiative flux distribution. 

toward the shock, the negative part implies qr+ > qr-, i.e. the net radiant heat 
flows towards the piston. Somewhere between the shock and piston, qr+ = qp-, 
so that the net heat flux is zero, For c2 = 1010/4 (corresponding lower piston 
velocity and lower temperature behind the shock), qr/qps is positive over most of 



The ‘piston problem’ with thermal radiation 455 

the flow region. As c2 increases up to 101*/4 corresponding to higher piston 
velocity and higher temperature, qr/qr, is negative over almost the entire flow 
region. This is because the higher temperature region moves closer to the shock. 

The thin solutions always yield equal net heat flux at the piston and at the 
shock (figure 2 (d)) .  This is, of course, what is expected physically. Each particle 
emits in both directions the same amount of energy which, in the absence of 
absorption, will eventually flow into the piston or pass through the shock. When 
the absorption is taken into consideration, the exact solutions show that the heat 
flux at the piston is smaller than that at the shock, i.e. ~qrP/q,.J < 1. Again, this 
is because the higher temperature region moves closer to the shock. 

In  conclusion, we have shown, using the similarity method, that the thermal 
radiation practically does not affect the pressure and velocity, but decreases the 
temperature and hence increases the density considerably. The shock distance is 
reduced until a minimum value is reached. We have also demonstrated how the 
thin solutions deviate from the exact solutions and how a complete pattern of the 
radiative heat transfer varies. 

The author wishes to express his gratitude to Dr S. H. Maslen for his discussions 
and encouragement during the course of this work, and to Mr B. Cramer for 
programming the numerical integration. 
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